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Dynamical model of a cooperative driving system for freeway traffic
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We propose an extended optimal velocity model applicable to cooperative driving control system, which will
be realized in the near future. In the model, a vehicle is controlled by the system using the information of
arbitrary number of vehicles that precede or follow. We investigate the stability of uniform flow and the
response to a disturbance in the linear approximation.
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I. INTRODUCTION

On highways, one can find that free traffic flow chang
to congested flow as the vehicle density increases. To exp
this phenomenon, a lot of studies have been done from
physical viewpoint@1–5#. There have been many attemp
constructing models for traffic flow: cellular automaton mo
els @6–8#, fluid dynamical models@9#, coupled map models
@10#, and a probabilistic model using the master equat
@11#. We proposed a dynamical model of traffic flow, an o
timal velocity ~OV! model @12#, which is one of car follow-
ing models. These models have successfully described
dynamical formation of traffic congestion. The transitio
from free flow to congested flow is understood as a kind
phase transition. The OV model first reveals the transit
mechanism very simply among car following models. Mo
over, the model well reproduces the observed flow-den
relation, so-called the fundamental diagram@13#. We recog-
nize the OV model as a basic model for studying the p
nomena of traffic flow.

In the OV model a driver is supposed to look at the p
ceding vehicle only. The reaction to the preceding vehi
plays an essential role to organize traffic congestion, an
explain the behavior of traffic flow. In more realistic situ
tion, a driver looks at more vehicles around him, and
effect modifies the model. In the viewpoint of control theo
for traffic flow, such a effect is important to suppress t
formation of congestion. In this context, there have be
several works to extend the OV model. In our previous
pers @14,15#, we discussed the improvement of stabili
when a driver looks at the vehicle that follows. Hayaka
and Nakanishi proposed another model for traffic and gra
lar flow, which incorporates the effect of the particle th
follows @16#. Nagatani proposed a model that a driver loo
at the next to the preceding vehicle as well as the prece
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vehicle@17#. The same model was also discussed by Saw
@18#. Lenz, Wagner, and Sollacher discussed a model th
driver looks at many vehicles ahead of him@19#.

Automatic driving control systems are utilized as a part
so-called intelligent transport system~ITS!. The suppression
of traffic congestion is one of the targets of ITS. A coope
tive driving control is one of such systems, where each
hicle receives information of many other vehicles and d
cides the optimal behavior. This system is expected
suppress the appearance of traffic congestion efficiently
this paper we propose an extended OV model, in whic
vehicle is controlled by the system using the information
arbitrary number of vehicles that precede or follow. We a
discuss how this extension improves the stability of traf
flow. The extended model includes the above models@14–
19# as special cases.

In Sec. II we present the extended OV model. We anal
the linear stability of uniform flow for the extended model
Sec. III. Section IV is devoted to the investigation for line
response of vehicles to a disturbance. Using results in
section, we present a dynamical model to control the r
traffic. We summarize and discuss the whole results
Sec. V.

II. EXTENDED MODEL

The OV model is formulated by the following equation
motion:

d2xn

dt2
5aFV~Dxn!2

dxn

dt G , ~1!

wherexn andDxn[xn112xn are the position and the head
way of nth vehicle, respectively. Vehicles are numbered su
that the (n11)th vehicle precedes thenth vehicle. We have
introduced the OV functionV(Dx), which represents an op
timal velocity of the vehicle with headwayDx. A driver
controls the acceleration to decrease the difference betw
the optimal velocity and the real velocity. Parametera, which
has the dimension of inverse of time, is called sensitivity

We extend OV model~1! to
©2003 The American Physical Society02-1
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d2xn

dt2
5aFV~Dxn1k1

, . . . ,Dxn11 ,Dxn ,Dxn21 , . . . ,Dxn2k2
!2

dxn

dt G . ~2!
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The OV function is extended to a function ofk11k211
variables, whereDxn1k1

, . . . ,Dxn are headways of the ve

hicles ahead of thenth vehicle, andDxn21 , . . . ,Dxn2k2
are

headways of the vehicles that follow. These variables
defined byDxn1k[xn1k112xn1k for k5k1 ,k121, . . . ,
2k2 . The model withk15k250 is the original OV model.

OV model ~1! has a uniform flow solution

xn5bn1V~b!t1const, ~3!

where all the vehicles have the same headwayb and the
same velocityV(b). Extended model~2! has also a solution
of uniform flow:

xn5bn1V~b,b, . . . ,b!t1const. ~4!

We compare the properties of the extended model under
condition that the model has the same uniform flow solut
as that of the original OV model. This condition imposes

V~b, . . . ,b!5V~b! ~5!

on the OV function for any extended models discussed
this paper. Under condition~5! we investigate the linear sta
bility of the uniform flow and the linear response to a distu
bance on the uniform flow of extended model for variousk1

andk2 .

III. LINEAR ANALYSIS OF EXTENDED MODEL

In this section we discuss the linear stability of the u
form flow. Let yn be a small fluctuation imposed on th
uniform flow. We assume the periodic boundary conditi
xN11[x1, whereN is the total number of vehicles. From E
~2!, yn(t) satisfies the linearized equation

ÿn5aF (
k52k2

k5k1

f kDyn1k2 ẏnG , ~6!

whereDyn1k5yn1k112yn1k and f k is defined by

f k5
]

]Dyn1k
V~b1Dyn1k1

, . . . ,b1Dyn , . . . ,b

1Dyn2k2
!uDy50 , 2k2<k<k1 . ~7!

We should choose the OV function such thatf k.0 for k
>0 andf k,0 for k,0. This choice is natural because of th
following reasons. The positive value off k(k>0) has the
effect of decreasing the velocity ofnth vehicle if each head
way of the vehicles that precede becomes small. On the o
hand, the negativef k (k,0) has the effect of increasing th
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velocity if each headway of the vehicles that follow becom
small. Condition~5! with Eq. ~7! becomes the condition fo
f k as

(
k52k2

k5k1

f k5V8~b!. ~8!

By changing the scale fort and a, we can chooseV8(b)
51 without loss of generality.

We investigate the stability of mode solutionyn(t)
5exp@inu2iv(u)t# of Eq. ~6!. In the same way as Ref.@12#,
we obtain the stability condition as

a.

X(
k

f k$sin~ku!2sin@~k11!u#% C2

(
k

f k$cos~ku!2cos@~k11!u#%

. ~9!

The similar condition for an extended OV model is obtain
in Ref. @19#, which is a special case of our formula.

The criterion of stability is graphically understood in Fi
1. We definea(u, f k) by the right-hand side of Eq.~9! as a
function of u for a given set of parameters$ f ku2k2<k
<k1%. The solid curve in Fig. 1 shows the plot ofa(u, f k)
for a given$ f k%, in the polar coordinate (a,u). The points
corresponding to the mode solutions labeled byu are distrib-
uted on this curve. For a given sensitivitya, we can draw the
circle of radius a. In Fig. 1, we set $ f 2 , f 1 , f 0%
5$0.25,0.25,0.5% and a50.5, for example. If the curve
a(u, f k) crosses the circle, the corresponding modes on
part of the curve outside the circle make the uniform flo
unstable. Thus, the uniform flow is stable for the case t

FIG. 1. The solid curve showsa(u, f k) in a polar coordinate
(a,u) for a set of parameters$ f 2 , f 1 , f 0%5$0.25,0.25,0.5%. The
dashed curve shows a circle of radiusa50.5.
2-2
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the curvea(u, f k) is completely inside the circle with radiu
a, i.e., a.a(u, f k) for all u. In other words, the stability
condition can be expressed as

a.max
u

a~u, f k!. ~10!

Here we consider a problem to find the minimum value
right-hand side of inequality~10! for a various choice of a se
of parameters$ f k%, that is, to find the extended OV functio
V( . . . ,Dx, . . . ), which makes the uniform flow ‘‘mos
stable.’’ Then we consider a minimax problem

ac[min
f k

$max
u

a~u, f k!%, ~11!

under condition~8!. We callac a critical sensitivity, and call
the solution$ f k% of Eq. ~11! for given k2 and k1 a set of
‘‘the most stable parameters.’’

First we consider an extended model withk250 and
k1.1, which we call ‘‘forward looking’’ optimal velocity
~FL-OV! models. In the models, a driver looks at vehicles
the direction of the vehicle. We perform a numerical sea
for a solution of the minimax problem for FL-OV models. I
the result, we obtained

f k5
1

k111
, k50,1,2, . . . ,k1 , ~12!

as a solution of Eq.~11! and the critical sensitivity as

ac5
2

k111
. ~13!

The smallness ofac compared to the valueac52 in the
original OV model1 shows the improvement of the stabilit
in FL-OV models.

Let us illustrate the stability of a set of the most stab
parameters. Solution~12! means

a~u, f k!5
11cos@~k111!u#

k111
. ~14!

The maximum value of Eq.~14! is given byu52pm/(k1

11), m50,1,2, . . . ,k1 , which is (k111)-fold degener-
ated. Figure 2 showsa(u, f k) for solution~14! in the case of
k152 together with another set off k , for the comparison.
The curvea(u, f k) for $ f 2 , f 1 , f 0%5$1/3,1/3,1/3% looks like
symmetric three leaves, which touch the circleac52/3. The
change of parameters from$1/3,1/3,1/3% to $0.3,0.3,0.4%
causes two leaves to shrink and one leaf to spread, and
the corresponding critical sensitivityac is larger than 2/3.
The behavior indicates the reason why$1/3,1/3,1/3% gives
the set of the most stable parameters.

Next, we consider another type of model, ‘‘backwar
looking’’ optimal velocity ~BL-OV! model, which is defined

1Before changing the time scale, such thatV8(b)51, the critical
sensitivity isac52V8(b) @12#.
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by k150 andk2>1. In the model, a driver looks at just on
preceding vehicle and the vehicles that follow. We choo
the simplest case,k150 andk251, for example. By sub-
stituting the conditionf 01 f 2151 into the right-hand side o
Eq. ~9!, a(u, f k) is written as

a~u, f 0 , f 21!5
1

2 f 021
~11cosu!. ~15!

Note thatf 0 can take any large positive value becausef 21 is
negative. Then the minimax problem~11! has trivial solution
ac50 at f 05`. The situation is not changed for gener
BL-OV models. We emphasize that the stability in th
BL-OV model presents the different aspect from that in t
FL-OV model.

IV. LINEAR RESPONSE

In the preceding section, we analyzed the stability con
tion of the uniform flow solution in extended models. Her
we discuss the linear response to the disturbance impose
the uniform flow. For the purpose of measuring the dynam
cal behavior for the stability of the uniform flow, we intro
duce two test functions

A~ t !5
1

e2 (
n

yn
2~ t !, ~16!

B~ t !5
1

e2 (
n

ẏn
2~ t !, ~17!

whereyn(t) andẏn(t) are the fluctuations of the position an
the velocity of thenth vehicle. The uniform flow is disturbed
at t50 such that only one vehicle changes its positionx to
x1e without changing velocity,

yn~0!5edn0 , ẏn~0!50. ~18!

FIG. 2. Two examples ofa(u, f k) are shown. The solid curve
shows a(u, f k) for the set of the most stable paramete
$ f 2 , f 1 , f 0%5$1/3,1/3,1/3%, in a polar coordinate (a,u). The dashed
curve shows anothera(u, f k) for $0.3,0.3,0.4%. The dotted curve
shows a circle of radiusac52/3.
2-3



: t

r
ve

ha
re
th
h

e
In
on
f

a
e

on
ed

n

w

of

e

the
-
n-

icles

t to
t of

nc-
m-

hat
is

V V

nc-
sh-

HASEBE, NAKAYAMA, AND SUGIYAMA PHYSICAL REVIEW E 68, 026102 ~2003!
The solution of Eq.~6! in this initial condition is written as

yn~ t !5
e

N (
u,s

v2s~u!

v2s~u!2vs~u!
exp@ inu2 ivs~u!t#,

~19!

wheres56 is an index for two mode solutions of Eq.~6!.
Now we discuss the linear responses for three models

original OV model, the BL-OV model withk251, and the
FL-OV model withk151. We set the sensitivity paramete
a53, in which value the uniform flow is stable for the abo
three models. The parametersf k are set as$ f 0 , f 21%5$1.5,
20.5% for the BL-OV model, f 051 for the original OV
model and$ f 1 , f 0%5$0.5,0.5% for the FL-OV model, which
is the set of the most stable parameters. In Fig. 3, the be
iors of A(t), which measures the fluctuation of position, a
presented for the three models. In the BL-OV model,
disturbance damps faster than the other models, whic
emphasized in our previous paper@15#. The disturbance
slowly damps in the FL-OV model. However, this result do
not necessarily mean the inferiority of the FL-OV model.
fact, the FL-OV model shows a small amount of fluctuati
for the test functionB(t), which measures the fluctuation o
velocity ~see Fig. 4!. In contrast, the BL-OV model shows
large amount of the fluctuation of velocity. This is just th
opposite result for the behavior of the test functionA(t).

In Fig. 5, we show the damping behavior of test functi
A(t) in the BL-OV model for various parameters compar
with the original OV model. The sets of parameters$ f k% are
as follows:$ f 0 , f 21%5$1.1,20.1%, $1.3,20.3%, $1.5,20.5%.
The disturbance damps faster as the parameterf 0 becomes
larger under the conditionf 01 f 2151. This result is ex-
pected from the stability condition derived by Eq.~15!.

In Fig. 6, we show the amplitude of velocity-fluctuatio
B(t) in the FL-OV models for various$ f k% compared with
the original OV model. The sets of parameters are as follo
$ f 1 , f 0%5$0.1,0.9%, $0.3,0.7%, $0.5,0.5%. The amplitude be-
comes smaller as the set of parameters approaches that

FIG. 3. The behavior of the test functionA(t) with a53: the
dashed curve, the solid curve, and the dotted curve representA(t)
for the BL-OV model, the original OV model, and the FL-O
model, respectively.
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most stable parameters~12!. This result is expected from th
result of the preceding section.

Next we discuss more complicated models. One is
BL-OV model of k252, in which a driver looks at the pre
ceding vehicle and two successive vehicles that follow. A
other is the FL-OV model ofk152, in which a driver looks
at the preceding vehicle and the next two successive veh
to the preceding vehicle. The other is a model ofk251,
k151, which we call a hybrid OV~HB-OV! model. In this
model, a driver looks at the preceding vehicles, the nex
the preceding vehicle and the vehicle that follows. The se
parameters$ f k% for each model is listed in Table I.

Figure 7 represents the damping behavior of the test fu
tion A(t) for the above three models. The sensitivity para
etera is set to 3. In the HB-OV model, the behavior ofA(t)
is almost the same as the BL-OV model. This indicates t
the property of fluctuation of position in the BL-OV model

FIG. 4. The behavior of the test functionB(t) with a53: the
dashed curve, the solid curve, and the dotted curve representB(t)
for the BL-OV model, the original OV model and the FL-O
model, respectively.

FIG. 5. The solid curve represents the behavior of the test fu
tion A(t) for the original OV model. The dashed, dotted, and da
dotted curves representA(t) for the BL-OV models, which have the
parameters$ f 0 , f 21%5$1.1,20.1%, $1.3,20.3%, $1.5,20.5%, respec-
tively.
2-4
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not changed so strongly by introducing ‘‘forward-looking
effect. By comparing Figs. 3 and 7, we find thatA(t) in the
BL-OV model ofk252 damps faster than that in the mod
of k251. In the FL-OV model ofk152, A(t) damps
slower than that in the model ofk151. This behavior of
FL-OV models will be explained in detail in the followin
section.

Figure 8 represents the damping behavior of the test fu
tion B(t). In the FL-OV model ofk152, the amplitude of
fluctuation of velocityB(t) becomes smaller than that in th
FL-OV model ofk151 ~see Fig. 4!. In the BL-OV model of
k252, the amplitude ofB(t) becomes larger than that in th
BL-OV model of k251. This means that vehicles respon
sensitively to the initial disturbance in the BL-OV model.
the HB-OV model, the behavior ofB(t) is almost the same
as the original OV model. The HB-OV model is a kind
BL-OV model including the ‘‘forward-looking’’ effect. We
can understand that the property of fluctuation of velocity
the BL-OV model is improved by introducing ‘‘forward
looking’’ effect.

In the FL-OV model, the fluctuation of velocity is sma
and the fluctuation of position damps slowly. In other wor
the FL-OV model controls the motion of vehicle ‘‘mildly.’
The BL-OV model has property just opposite to the FL-O
model. The fluctuation of velocity is large and the fluctuati
of position damps fast. The BL-OV model controls a vehic
‘‘severely.’’ The above two models are complementary in t
property of the response to the disturbance. In the HB-
model, the fluctuation of velocity is suppressed compare

TABLE I. The sets of parameters$ f k% for the BL-OV, HB-OV,
and FL-OV models.

Model k1 k2 f 2 f 1 f 0 f 21 f 22

BL-OV 0 2 2.0 20.5 20.5
HB-OV 1 1 0.5 1.0 20.5
FL-OV 2 0 1/3 1/3 1/3

FIG. 6. The solid curve represents the behavior of the test fu
tion B(t) for the original OV model. The dashed, dotted, and da
dotted curves representB(t) for the FL-OV models, which have the
parameters$ f 1 , f 0%5$0.1,0.9%, $0.3,0.7%, $0.5,0.5%, respectively.
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the BL-OV model, and moreover the fluctuation of positio
damps as fast as the BL-OV model. We insist that
HB-OV model is a good candidate to control real traffic flo
on a highway.

V. SUMMARY AND DISCUSSION

In this paper we discussed an extended OV model for
purpose of constructing of a driving system for freeway tr
fic. In the model, a vehicle is controlled by the system us
the information of arbitrary number of vehicles that prece
or follow. The properties of the model are compared un
the condition that it has the same uniform flow solution
that of the original OV model for any value of headway. W
investigated the dynamical properties for the stability by c
culating the response to the disturbance imposed on the
form flow. In the FL-OV model we obtained the set of mo
stable parameters, which gives the highest stability, whe
the idea of such kind of parameter is useless for the BL-
model. The FL-OV model and the BL-OV model ar

c-
-

FIG. 7. The solid curve represents the behavior of the test fu
tion A(t) for the original OV model. The dashed, dotted, and da
dotted curves representA(t) for the BL-OV model, the FL-OV
model, and the HB-OV model listed in Table I.

FIG. 8. The solid curve represents the behavior of the test fu
tion B(t) for the original OV model. The dashed, dotted, and da
dotted curves representB(t) for the BL-OV model, the FL-OV
model, and the HB-OV model listed in Table I.
2-5
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complementary in the property of response. In the FL-O
model, the fluctuation of velocity is small and the fluctuati
of position damps slowly. On the other hand, in the BL-O
model the fluctuation of velocity is large and the fluctuati
of position damps fast. On the basis of these analysis,
have shown that the HB-OV model inherits the super
properties from both models. The HB-OV model is a can
date as a dynamical model of cooperative driving system
controls real traffic flow on a highway. The dynamical effec
of looking at the vehicles that proceed or follow investigat
,

g

hy

02610
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in this paper could be common to other types of models,
our results offer the important information for constructing
control theory for traffic flow.
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